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It is shown that the theory of random functions permits the expansion
of the effective tensor X{jkl for the elastic moduli with respect to cor~
relation functions and that it leads in the second approximation in the
Voigt-Reuss scheme to values that lie to one side of the x;]«kl, while
in the third approximation it brackets the latter. The analysis is used
to refine the Hashin limits to the elastic moduli for 2 mechanical mix-
ture of isotropic components and polycrystalline aggregates of cubic
structure.

There are two methods for calculating the effective elastic moduli of
heterogeneous solids: virial expansion [1](as a power series in the con-
centration of one of the components) and the method of correlation
functions [2] (expansion with respect to relative fluctuation of the elas-
tic moduli). identical results should be obtained in the two cases if all
terms are incorporated, but great mathematical difficulties restrict
one to the lowest approximations. The first approximation in the virial
method gives better results when the concentration of one component is
low, while the method of correlation functions gives better results when
the fluctuations in the elastic moduli are small and the concentrations
are similar.

Methods have been developed for determining the upper and lower
bounds in both approaches, and various schemes of averaging are used
for this purpose in the correlation-function method. The upper bound
is established by renormalizing the equation of equilibrium, while the
lower one is found by renormalizing the equation of incompatibility.
The range of the bracketing can be reduced by means of higher approxi-
mations. The range can be reduced in the limit to zero, which implies
passing from an approximate effective tensor to the true one, which re-
lates the means in stress and strain over the material. Here we show
that the two methods of renormalization give identical results when all
terms of the series are summed.

If the tensor has a Gaussian distribution, the moment functions of odd
order are zero, while the even ones are expressed via combinations of
the binary functions [3]. However, a mechanical mixture of several
comporents is not Gaussian, and the odd moments are not zero. Splitting
of the higher-order correlation functions is possible also for mechanical
mixtures having determinate phase interfaces, but this involves various
simplifying assumptions. A derivation is given for 2 moment of arbi-
trary order, which allows one to formulate the conditions under which
such splitting is possible. The results are used in calculating the exact
'value of the effective bulk modulus for a medium with a homogeneous
shear modulus.

1. To calculate higher-order correlation functions
we seek the probability that at point ry there is com-
ponent i, at point r; component j, etc. The joint proba-
bility of this is denoted by Py, (r1, T2, r5...). We
derive the differential equations satisfied by Pj(ry),
Pyj(ry,1p), etc. viathe conditional probability pij(r1I r3),
which defines the probability of finding component i at ry
if componentj is at ry. We consider only a two-compo-
nent system, so i, j =1, 2. Then the probability
Pyr + dr) of finding component i at point r + dr is ex~
pressed in terms of the probability P.(r) of finding
component j at r by Smoluchowski's equation:

Pi(r -+ dr) = Zp;j (x +-dr|r) P;(r). (1.1)
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We assume that the mixture obeys the condition
pi; (x + dr | r) = 6«;]' + Aj; (x)dr, (1.2)
in which the matrix Aij(r) is defined by

As=[zmein],, (Ja=0) w3

and satisfies the normalization condition stated in pa-
rentheses.
For an isotropic and quasi-homogeneous medium

Ay (r) = 4y (0) - = 4y n., (1.4)

We substitute (1.2) into (1.1) to get

VPi(r) = 2 Aij P;(r). (1.5)

We solve (1.5) with (1.4) and the normalization con-
ditions to get

P, = aA,;, + Ciexp (—r/ a),
P, = ady + Ciexp (—r/ a),
a= (A, +455) (1.6)
Then, in view of the condition of quasi homogeneity,
Py (r) = ¢, (1.7)
we find the relation of Ajj to the component concentra-
tions

o (1.8)

—¢y
aAij = ” ¢
2

We use the following equation to calculate the joint
probability Pij(rl: Ty):

DPyj (v, o) = ) P (¥1| ¥5) P (x5, 13). (1.9)
k

Then, as ij(rl,rz) = ij(lrl — ry) for a quasi-
homogeneous medium, we have

d
v P,',j (7‘) = Z AikPk,-(r). (1.10)
k
Substitution for A;y from (1.8) gives
6L Py (r) = — Py (1) + PiP;. (1.11)

The following is the solution to (1.11) that satisfies
Pij(o) = Ciéij:



P (r) =ay; + By (1), (1.12)

o () =exp(—r/a),

o5 = 6ty By = edy; — ey (1.13)

Then (1.12) gives the joint probability found under
the condition that the passage from the initial state to
the final state is performed by motion of a single point
by r. Now let the transition be performed by change in
the coordinates of the start and end of the line, i.e.,
there is a transition from the state r3, k and ry, I to
ri, i and ry, j. This approach allows us to introduce
the four-subscript matrix Ay;i;, which will be used in
what follows to calculate the joint probability Pi]—k(rl,
ry,T3). Then (1.9) is replaced by

Py (rq, v2) = Z pijur (13, 1'2| T3, ¥4) P (15, 14). (1.14)

To calculate the matrix for transition from state
ki, r to the new state ij, r + dr we resolve dr into the
normal component dr, = dr-n and the tangential com-
ponent dr.. = rdn. I dr; = 0, the transition occurs be-
tween points lying on the ray r/r = const, while dr, =
= 0 means transition between points on the sphere r =
= const. The first transition alters the ratio of the ra-
dius to the scale of the correlations, while the second
leaves it unchanged.

We therefore consider transitions as identical if
the initial and final states have the same ratio of the
distances to the scale of the correlations. A sphere
represents the surface formed by the correlation-
scale vector for an untextured medium, so we can put
dr; = 0 and consider only transitions that alter the ab-
solute magnitude of the distance between points.

The following matrix then describes the transition
from kI, r to ij, r + dr:

Dija (r + de | v} = 8y 85 + Ayjm dr, (1.15)
and substitution into (2.14) gives

@ P

d
Py = 2 Ay Py (1.16)
k1

The equivalence of (1.16) and (1.10) means that Aijkl
takes the form

aAijrr = — (8 — P3) (8;; — P;). (1.17)

Relation (1.15) imposes severe restrictions on the structure of the
mixture. If we take account only of the mean grain sizes of the compo-
nents in calculating the higher moments (these sizes are related to the
correlation scale by the rule for mechanical mixing), this is equivalent
to ignoring the grain shape, which can be taken into account, for ex-
ample, via the set of moments <R(®)>, (R(w)R{®:)) etc., where R is
the coordinate of the surface of a grain in a frame of reference whose
origin coincides with the center of gravity, w = R/R, and ¢ » denotes
averaging with respect to angle. Moreover, no distinction is drawn be-
tween the matrix and an inclusion, so the coupling is considered iden-
tical for the regions filled by the two components. Equation (1.186) is
applicable if the component concentrations do not differ too greatly
and the components have similar degrees of coupling. The method
should give the best results for quasi-spherical grains, when <(R —

— KBy € UDYA

2. We now consider the calculations of Pi'k(rl’ rs,

r3). As the medium is isotropic and quasihomogeneous,

Pjjk(rs, vz, v9) can be put as Pyjilr’,r", r™), where
r={r—rg], r=|r3—r, r"’-:llrl-——rzi

i

We envisage transitions such that r" = const and
r™ = const but r' = const. Arguments similar to those
for (1.15) and (1.17) then give

8 . r "t 7 14 H
Fp'ijk(r s T r”) = 2 Ajkmnpimn(r s T ,T'”’). (2'1)

m,n
We substitute from (1.17) for the Ajkmn to get

a 1
g;TPijA- @, "= —T{Piik "y —

— PPy (r") — PPy (") + PiPiPy}. (2.2)

This allows us fo calculate the third-order correla-
tion function for the tensor. We introduce moment N
of the tensor in order to find the differential eguation
for the explicit form of this function. For simplicity
we omit the tensor subscripts hbqrs =i and get for
this moment that

Mogerx (F1y + oy £5) = A (1) M (1) . W0 (1)) =
= AP APy Py, Ty (2.3)
with 3 a; = N. The centered moment of order N is
h=1

then given by

Baay.a, {1, Tgy oo ) =
= ([M{ry) — A @] (A (ra) —
— A EI® . A () — A ()] =
= 2 e 1 g -

24 0500a

— A (D1 Py g (1, -y Ey). (2.4)

We get from (2.3) and (2.4) for an isotropic quasi-
homogeneous medium that

My (1) = <MV (1) >= 20 Py (1) = 2 ¢,
b=0, py=M,— M,
v = My — 3M M, 4 283,
My (xy, 1) =M% p,exp(—7"/a),
Wy (v, ) = By exp(—r" [ a),
My (v3, Ty Xg) = Zhdihy Pygy (77, 17, 77,
Paag (Pa, Yo, Bg) = My, (7, ¥, ) — M, M, ) +
+ My (r) 4+ My ()] 4 2M%;. (2.5)

This expression gives

a
e B (’,/, 7‘", r///) —_

9 .
= g Man (7' 7, 77y My g Moy () (2.6)

The derivatives on the right-hand side of (2.6) are
defined from (1.11), (2.2), and (2.3}, so
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5 7 i 14 N 3
anwll (r ) = — T [11411 (f' ) —_ J[l“]. (2.7)
av IW ’ "o 1 M ’ ” rr
a w (7, r ) = My (7, 7 ) —
— M [ My (") M (r7)]+ M3} (2.8)

Substitution of (2.7) and (2.8) into (2.6) gives

a 4 " 1 ’ ” ”
g b (77, 17 1) = — (777, ) (2,9)

Analogous equations apply for differentiation with
respect to other variables, so the central moment
#y13(r?, ", ™) takes the form

g (75 7 7Y = gy (0, 0, O (7, 7", ™) (2.10)
with
taa (0, 0, 0) = 4 (2.11)
@ (r', ", ") = (o (Me ("),
¢ (r) =exp (—r/a) (2.12)

From (1.12) and (2.10) we get the solution to (2.2)
for the mixed probability Pij 1lr1, T2, T3):

P ik (T1, T2, F3) == €;6565 -+ ¢; (¢idp — cie) 9 () +
=+ ¢ (e By — i) @ (r") + o ey — ¢ie)) @ (r'y 4

+ [Z Cadindindpn — cic;Os — cieydu — cxtids; +
n

+ 2cic,~c,l.] (e (e () (2.13)

Expressions (2.10)—(2.12) also define the correla-
tion functions for the elastic-modulus tensors; in fact,
the second-order correlation function coincides with
the central second moment, while K(ry, r3, rg) {third-
order correlation function) is expressed as follows in
terms of uy31(ry, re, r3) (central third moment):

Ky (g, ¥, Tg) = pygy (1q, Fp, ¥5) + 305 (2.14)

The central moments of higher order canbe derived
similarly as

0.50(n—1)

Tn) = Py @ (r), (2.15)

Bar..a (T1, T2y -
——
n

in which r¢ = r; = ri, while the product is taken with
respect to all possible pairs of differences r; — Ty

3. These results are used to calculate the effective bulk modulus
for an untextured heterogeneous medium consisting of isotropic com-
ponents. We envisage only the case in which the components have the
same shear modulus.

A published technique [3-5] is used to renormalize the equation of
equilibriums:

Lyu,+ 1;=0, Ly = VitV - 3.1)

Summation with respect to subscripts occurring twice is assurned.

The displacement vector uy, the tensor Ajp;n,, and hence operator
L7, are random functions of the point. We introduce the inverse opera-
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tor Mll'l
LyM), =—28;, (3.2)

and also the operators inverse to the regular components <Ly > and(Mp,>

Ly* <M, > =—6; (3.9)

n’

<L,”> Mln*z — 0

in?

and thus find the renormalized equation of equilibrium for the regular
part of the displacement vector:

Ly*upy + f; = 0. (3.4)

Here ( ) denotes averaging, and the averaging region is taken as
fairly large relative to the spatial scale of the correlations, but small
relative to the distance within which the regular parts of the functions
change appreciably.

Matrix expressions give us the following for operator L*:

L*=<Ly— AL, AL=<L>T_8—Q, T (8.5)

Q@ =<(M*RM*Ry - <M*RM*RM*R) + ... . (3.6)
Here 1 is the unit matrix, while R denotes the random component ot
L. Operator M* is related as follows to the tensor Green's function for
the quasi-homogeneous medium:

Mij*szgaij (r—r) fj (r')dl"EG,'j*fj. (3.7

We find from (8.5)-(3.7) that

00
AL= Y AL™,
[+]

AL® (= 1yrcLy @™, (3.8)

The first two terms in the series of {3.8) are

AL® = — (RG» Ry — <RG+ RGRy — ..., (3.9)

AL® — ¢RG * Ry G+ {RG * Ry + 2(RG » R) G+,

#¢RG %« RG+ Ry -+ (RG+ RG» Ry G+ (RG+ RG» Ry +... . (3.10)
We rearrange the terms in the double series of (3.8) to get

oo
AL =A™ (3.11)
2

AE® — — (RG+ Ry, AK® = — (HG« RGx R>
AK® — — (RG x RG» RG » R + (RG x R> G» (RGx R
AK® — _ (RG+ RG+ RG « RG+ Ry -+

+ 2¢RG % Ry G {RG» RG * R) (3.12)

Here AK() combines all terms of (3.8) that contain the random
operator R n times.

We calculate AK®) and the second term of AK®); the other terms
in AK(1) can be derived similarly.

We substitute the explicit values of the R into Ak® o get

— <RikG;m*an> Cupy =

= — ;i VomGin * VBhoptg V> > =

= ;4ikm S QU —T) Gy (F— 1) <ty (1) 1" (313)
Here Shijim = Mijim — (Mijem? is the fluctuating part of the elas-
tic-modulus tensor and 4YF7 q(r) is the pair correlation function, with
@(r) defined by (2.5) and (2.12).
As only the bulk modulus K fluctuates here, the following is the
autocorrelation tensor for the elastic moduliz

AYI = DD, 5 8,0

nplq i km-np-lg’ D(I?) = <(6K)2>‘ (3'14)



We thus need to know the convolution Gkn, kn IR order to calculate
(3.13), and this is found via a chain of equations:

1 (2 3<Ky ¢
GI.n,I.n:""g}a r Skn_3(K>+4p,r,kn r =

1 1 1
ST P A T T & T

We substitute (3.14) and (3.15) into (3.13) to get
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AER =7, D@ (K> + /) L. (5.16)

A similar calculation gives as follows for the first terms of the

o),

— <Ry G # R, G

7%
mplpg* - - B> ={(=1)" 9%,

D (KK + S (3.17)

Here n equals the number of cofactors Rik on the left, while the
central moments of order n for K are defined by

D%) = 0, D(I? = c1eo( K1 — Ka)?,...,

DR = aieale™t - (— )™ (Ka — Ko™ (3.18)
Consider now the second term in AK, We use (3.13) to get

(R, G *Bm> Grs*<R

ik kn Goo# Ryp iyd ==

su
=7 Ak 4ot SSS QU —1)Q" —1") Gy oy T —T')
Grg, gt —77) Gy, we (F" — T7) Sy o (") dr’ dy” dr™. (3.19)
We use (3.14) and (3.15), and also integrate, to get
Gzihakn * Rnr> Grs * <Rsuauv * Rvi) =
= =V, (DPP (K> + 4fsp)~. (3.20)
The other terms of the AK(H) are calculated similarly; this together
with (3.16), (8.18), and (3.20) gives
AR = 7,7 put™, (3.21)

2
D@

{¢.) RS — ('n):’ (2)pn~2
TR Y " wE

(e — ¢3) (K1 — K3)

Sy (3.22)

il

3

We see from (3.21) that summarion of the operator series of (3.11)
amounts to summation of the numerical series

(o]

(2)
ALy = V,9, Eu(n) =Y, 1‘&_ ;- (3.23)
2
We put the effective operator Lyas
Lyp* = (B* +YaW) V¥V 4 18,7 (3.24)

and use (3.5) and (3.23) to get K* (the effective bulk modulus):

D@

by (3.25)
61K 4 coKy -4t

K* =<Ky —

These resuits are restricted by the condition for (3.23) to converge:

&1 <. (3.26)

This condition is met for any component concentrations and arbi-
trary values of the elastic moduli. In the limit ¢; — 0 we have |E]| =
=1, but thenw(® = 0, and hence %P =

4. This scheme is based on calculating the correlation corrections
0 {Mpym - Another approach to allowance for the correlations consists
in finding the correlation comections to the tensor for the s zy,. The
basis of the calculation is

Liklmslm + My =0, Liim = Sz'pqgkrsviovr Sgstm- (4.1)

Here oy is the stress tensor, m, is the incompatibility tensor, and
Eing i unit antisymmetric tensor.

In {67 Ly gy Was reno@a}ized in lfhe second approximation. The
above method for rencrmalizing L;y gives

. i
fikim = §F* Gikslm + (4.2)
i 2
+ 7[!;( 8 Bpm + Bimdy — Téikﬁzm s

1 1 Difke .3
1??=<‘1€‘>”‘61/K2+c2/1<1+o.75/p‘ “.3)

The following convergence condition was used instead of (3.26) in
deducing (4.3):

(= ca) (1/ Ky ~1/Ks) (4.4)
ATE, 0757/

Inl<t, n=

Since K* has been calculated with allowance for all correlations,
the K* given by (3.25) and (4.3) should coincide, which is readily seen
if we note that

— 2) e
DY = DR,

This K* defines the exact relation betweenthe averaged bulk stresses
and strains:

(O30 = 3K*<Skk> .

The values <K) and <1/K)7" define the upper and lower bounds to
the effective modulus. Formulas (3.25) and (4.3) show that this require~
ment is met for any concentrations and elastic moduli, with K* coinci-
dent with the upper bound (K),if g —« and with the lower bound
A/ Kytif p—0.

The effective modulus coincides with the arithmetic mean 1/,((Ky +
A /K> If 4p/3 = ¢y + Ky,

Hill [T} used energy considerations for the case y; = jt, to calculate
the true bulk modulus as

. 4 W&y 4 uKRr
S AIEE ¥ 4| [E S
Ky =<Ky, | Kp=/K™ (4.8)

It is readily seen that (4.8) coincides with K*,

The Hashin~Shtrikman variational method [8] provides more closely
spaced bounds than does direct Veigt-Reuss averagings only for pr; =
does the method give an exact value for the bulk modulus that coin-
cides with (4.6) and (3.258). On the other hand, the use of random func-
tions allows one in principle to calculate exact values for the effective
moduli K and p if the fluctnations allow of expansion as in (3.8).

We are indebted to V. V. Bolotin for a discussion,
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